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A QUADRATURE FORMULA 
FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE 

QAZI IBADUR RAHMAN AND GERHARD SCHMEISSER 

ABSTRACT. A quadrature formula over a semi-infinite interval for entire func- 
tions of exponential type is established. An alternative approach to a known 
expansion formula and an extension of it are also presented. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

It is known ([4]; see [2] and [12, (2.6)] for references) that if f is an entire 
function of exponential type less than 2n and f is integrable in the sense of 
Cauchy on R, then 

(1) J f(x) dx= E f(n) 
-oo n=-oo 

The restriction imposed on the growth of f cannot be relaxed. Indeed, for the 
function 

f sin(2nz) if z 0, 

2n if z = O, 

which is of order 1 type 2n , we have f0 f(x) dx = 
0 

while ?0 f(n) = 2n. 
It is natural to wonder if a similarly simple formula holds for the integral over 
a half-line. Since for even functions, (1) is equivalent to 

00I 1 
(1') ] f(x)dx = jf(O) + Zf(n), 

n=1 

it is meaningful to compare f0? f(x) dx with 'f(O) + EZ??=l f(n) . According 
to a formula of Plana [8; 6, ?4.9], 

00 I~~ 00 0OO f(jy) - f(-iy) 
(2) ] f(x)dx = 2f(O) + Zf(n) -Jo (e?y dy 

n= 1 

if 
(a) limy +0o If(x + iy)le-2ny = 0 uniformly in x on every finite interval 

and 
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(b) fj? If(x + iy)Ie 2XYdy exists for every x > 0 and tends to zero as 
x -* +oo. However, (2) expresses the quantity 

Q =1 f(x)dx - (f(2 )+ t f(n) 
n=1 / 

as an integral involving values of f on the imaginary axis. Below we obtain 
an expression for Q which is quite different and seems to us to be preferable 
from a numerical point of view. 

Theorem 1. If f is an entire function of exponential type T less than 2n and 
fJO f (x) dx exists in the sense of Cauchy, then 

00 1f 0 ( + B2 
(3) f (x) dx = 2f() + 1k f(n) + 1E f=2j-) (2) !' 

where B, (v E N) are the Bernoulli numbers. The second series converges 
absolutely. 

Note that (1) follows from Theorem 1 applied to f(x) + f(-x) . For another 
formula for quadrature over semi-infinite intervals see [1 1, formula ( 1. 13)]. 

The second series in (3) may not be small and so should not be seen as a 
remainder. However, we may have to include only the first few terms of this 
series to obtain a good approximation to the integral. This is indicated by 

Theorem 2. If in addition to the hypothesis of Theorem 1, f is bounded by M 
on the real line, then for k > 2 

1 Zf(n) k-I 
J f (x) dx = 2f(?f(n)f( + f(2j1-) (o)2J + Rk[f 

with 

2MC(2k) T 2k 
(4) IRk[f]I < (1 (T/27r)2)T 2n J 

where 4(x) : n-x denotes the Riemann zeta function. 

Remark 1. If f is an entire function of exponential type T, then f(h.) is an 
entire function of exponential type less than 27r for all h E (0, 27r/T). Since 

{00 {00 

J f(x) dx = h J f(hx) dx, 

we see that the restriction on the exponential type in Theorems 1 and 2 does 
not really limit their scope. Choosing h appropriately and working with f(h.) 
instead of f makes the right-hand side of (4) small in any case. 

Remark 2. The assumption of boundedness of f on the real line can be relaxed. 
As the proof of Theorem 2 will show, (4) holds with T replaced by a if in 
addition to the hypothesis of Theorem 1 there exist constants M > 0 and 
E (0, 27r) such that If(')(0)l< Mai for j = 3, 5,7,.... 
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Remark 3. A bound for the remainder Rk[f] can be given even if f satisfies 
nothing but the hypothesis of Theorem 1. Indeed, for given e E (0, 27 - T) 
there exists a ko E N such that 

(5) IRkLf]I?< 2C'(2k) 47r2 (1 fork>ko 272 -ce e(47r e) 272u -rk0. 

This will be explained in ?3. 
For functions which are bounded on the real line, formula (3) can be extended 

as follows. 

Theorem 3. Under the hypothesis of Theorem 2, 
0OO 00 

00Bjz 

(6) f;t(x) dx = Zf (z + n)+ E (0) j! 

(6) Jo f(x) dx = n=O 1=1 

where Bj(z) (i E N) denote the Bernoulli polynomials. Both series converge 
uniformly on compact subsets of C. Moreover, the second series converges abso- 
lutely. 

Remark 4. In Theorems 1-3 the series over n need not converge absolutely. 
For this, it suffices to consider the function 

cos(irz) for z 5$ -1/2, 
(7) f(z) 1z + /2 

Xr for z = -1/2, 

which satisfies the hypotheses of these theorems. 

Remark 5. As the proof will show, the conclusion of Theorem 3 remains true 
under the weaker hypothesis that in addition to the assumptions of Theorem 1 
there exist constants M > 0 and C E (O, 27r) such that supx>0 If(')(x)I < Ma 
for all j E N. 

2. LEMMAS 

We continue to use the notation Bj and C(.) for the jth Bernoulli number 
and the Riemann zeta function, respectively. For easy reference, we formulate 
a few lemmas, which are not all new. The following lemma is the special case 
m = 0, a = 0, b = N of Theorem 7 in [9]. 

Lemma 1. Let f be holomorphic and of exponential type less than 27r in a strip 
{z E C: - 3 < Re z < N + 3}, where 3 > O and N E N. Then 

1 N-1 

| f(x)dx = 2(f(?) + f(N)) + E f(n) 
n=1 

k B 
(8) - (f(2j- 1)(N) _ f(2j -1) (0)) B21 

j=1 (2])! 

+ i(_-)k j L2k(t)(f(2k) (N + it) _ f(2k)(N - it) 

- f(2k)(it) + f(2k) (-it)) dt 
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with 

(9) Lk(z) :=(-)k e (k E N\{1}, Rez > 0). 

The estimate contained in the following lemma will be used repeatedly. 

Lemma 2. Let f be an entire function of exponential type T. Then for given 
Zo E C and e > 0, there exists an nO E N such that If(n)(Zo)I < (T + C)n for 
n > nO. 
Proof. This follows from (2.2.11) in [1], taking into account the definition of 
exponential type as given in [1, ?2.1]. 5 

The following two lemmas are of importance for the investigation of the cases 
N -* ox and k -* 00, respectively, in formula (8). 
Lemma 3. If f is an entire function of exponential type less than 2n and 

fo0 f(x) dx exists in the sense of Cauchy, then f(x) and all the derivatives 
f(i) (x) tend to zero as x 

-* 
+oc. Furthermore, 

{00 

(10) lim j Lk(t)f(k) (N ? it) dt = 0. 
N--oo 

Proof. Denoting the exponential type of f by , we first observe [1, ?2.4] that 
along with f all its derivatives are also of exponential type T. Further [1, 
Theorem 11.3.4*], the existence of f0o0 f(x) dx implies that f(x) and all its 
derivatives f(k) (X) tend to zero as x -* +0 . In particular, f(k) (X) is bounded 
on [0, +ox). Using all this information, we infer from Theorem 6.2.3 in [1] 
that 

If(k)(X + iy)I < Ce(7?+T/2)lYI for x E [0, +00), y E R 
with an appropriate constant C > 0. Thus, recalling (9), we have for y > 0 

00 ?? 0? e-27rvJt+1[t+Ttl2 

Lk(t)f(k)(N + it) dt < C |1 E 
(2ed)k t 

__ _ _ C C(k) < (2nk C;(k) j e-(7-/2)t dt =- e2(7k l) e ,-/2)y 

which tends to zero as y -* +00. On the other hand, the above observations 
imply [1, Theorem 6.2.8] that f(k)(x+ iy) tends to zero as x -* +xo uniformly 
for IY I < Yo, where yo is any positive number. Hence, 

Y 
lim j Lk(t)f(k) (N + it) dt = 0 

for any positive y. This together with ( 11) implies (10). El 

Lemma 4. Let f be an entire function of exponential type less than 27r. Then 

lim j Lk (t) f(k) (t) d t = 0. 
k - oo 0 

Proof. First we note that the integral Ik f0:= Lk (t)f(k) (t) dt exists for all 
k > 2, since along with f the function f(k) is also of exponential type less 
than 2 r. In view of the fact that Lk (t) = L + I(t), integration by parts yields 

Ik = [Lk? (t) f(k) (t)]o -o j Lk? (t) f(k+1) (t) dt = -Lkl (0) f(k) (0) -k+ I k+1 0 k+1 k+1 
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and so for any k > 2 

k-i 

(12) I2 = Z(-1)j+1Lj+1(0)f(j)(0) + (_l)kIk. 

j=2 

It is therefore sufficient to show that 
00 

I2 =E (- )i+ I 
Li+ I (O)f(i) (?). 

j=2 

For this, we note that I2 = limT,oo fT L2 (t)f"(t) dt and write f" as 

f"0(t) = nfn! (?) tn 
n=O 

where the series converges uniformly on compact subsets of C. It follows that 

(13) TL2(t)f"(t) dt = 00f(n 
) 

L2(t)tn dt (T> 0). 
n=O 

Integrating by parts, we get 

(14) j L2(t)tn dt =-n j L3(t)tn-' dt = n(n - 1) L4(t)tn-2 dt 

= =(-l )n+1 nILn+3(0). 

Further, 

( 1 5) (-1 )n+ Ln+3 (?) = S (27rj)n+3 (27r)n+3 (2+ 3 n)3 

Since L2(t) > 0, the estimates (14)-(15) imply 

(16) dt) L2 (t) tn dt < 
0f(n+2) (O)Ln+3(0)1 < - 

1- (O ) 
1n2 (27r)n+2 2 

for all T > 0 . By Lemma 2, the right-hand side of ( 1 6) converges geometrically 
to zero as n -* ox. Hence, the series in (13) has an absolutely convergent 
majorant independent of T. Letting T tend to infinity and taking into account 
(14), we thus obtain 

I2 = j L2(t)f"(t) dt = E(_ I)n+ Ln+3 f (0). 
n=O 

In view of (12) this implies that limk,0o Ik = 0 as was to be shown. 5 

We also need an estimate for Bernoulli polynomials, which is so straightfor- 
ward that it may not be necessary to look for a possible origin. 

Lemma 5. The Bernoulli polynomials Bn(z) satisfy 

(17) Bn (Z) n 
Bv E znv 7r2 e2|nlz 

n!1 = v!.(n -v)! 3 (27)n' 
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Proof. The first inequality is obvious, since the Bernoulli polynomials may be 
expressed in terms of the Bernoulli numbers as [7, p. 458, problem 4; 10, p. 
224] 

(18) Bn(Z) ) (n)BvZnv. 

Recalling that [6, p. 13, p. 111, p. 269, eq. (4.9-5); 10, ?9.1] 

1 Bo= 1, Bj=-2' 
(19)2 

B2( = (27r)2j (2j), B2j+I =0 (j EN), 

we may write 

E | (n)B znv-v < lzln + 2 lzln-1 + 2 Z (27v) (nnn! 

Since C(v) > C(2) = 7r2/6 for v > 2, we get 

_ Bvzn-v < lZln 2( lzln-1)! 2+(2) n-2 127zlv 
z v!(n - v)! Izn! 2 (n - 1)! (27r)n z v! 

< 2C(2) ( 3 I27rzn 3 12rzln-1 n-2 12IrZl7 

(27r)n \712 n! + 7(n- 1)! Ld ! J 

< 12 1 
n 

127rz1v 

3 (27)n v! 
ii! 

which readily confirms the second inequality in (17). o 

The following lemma is not new (see [3, formula (9.5)], where it has been 
deduced from a theorem based on the Borel transform and involving intricate 
arguments), but we shall present an alternative proof. 

Lemma 6. If f is an entire function of exponential type less than 27r, then 

(20) f(z) = j f(x) dx + Z(f(n-1)(1) - -1)(0)) n! 
n=1 

Proof. Setting N = 1 in Lemma 1 and letting k tend to infinity, we infer from 
(8) with the help of Lemma 4 that 

(21 ) .;f (x) d x =2(ft(?) + f 1 )) - , ( f(2j- l ) ( 1) _ f(2j- l) (o) ) _2 Jo 2 ~~~~~~~~j=1 (2j)!' 

Using that B1 = -1/2 and B2j+I = 0 for j E N, we may rewrite (21) as 

(22) f('? = j f(x)dx+(f(n-i)(1)-f(n-)(0))#n f (0) f(x) 
dx~~n 1 
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This formula applies to f(k) as well, since along with f its derivatives also 
satisfy the hypothesis of Lemma 6. Hence, 

00 
Bn 

f(k)(O) = f(k-1)(1) _ f(k-1)(o) + Z(f(k+n-1)(1) _ f(k+n-l)(0)) Bn 

(23) n=1 

= Z(f(n-1)(1) - f(-'1)(0)) Bn-k 

n=k (n 

Substituting (22)-(23) into the partial sums of the Taylor series of f at the 
origin, we get 

E f (x) dx + Z(f(n-1)(1) _ f(n-I)(0)) s7 Bn n zk 

(24) k=O +n=i k=)L. ( k)k 

+ s (f(n-1)()_ f(n-1)(0)) ) (n-k Zk 

n=N+1 k=O (n 

Now, by (18), 
n 

Bn-k z k _Bn (Z) 
k=O (n-k)! - n! 

and by Lemma 5 for n > N, 

_ n_k _ZI < 
k=O (n k)! k! - 3 (27r)n 

Hence, denoting by T E (0, 27r) the exponential type of f and using Lemma 
2 with e = X - T/2, we find that for sufficiently large N 

E (nO - ( 
1)-t(?)) E 

(n-k Z 

n=N+1 k=O (n 

27r2 e27Ilzl E 2I+T 1670 e2Ilzl 2r+ T N+1 

3-7r T/ n=z+l (47r ) 3 4X2_z2 47r 

which converges geometrically to zero as N -x o0. This shows that (20) is the 
limit of (24) as N tends to infinity. 5 

It was the late Professor R. P. Boas who asked one of us whether the ideas 
developed in [9] could be used to establish formula (20) of Lemma 6. 

3. PROOFS OF THE THEOREMS 

Proof of Theorem 1. Letting N tend to infinity in Lemma 1, we infer from (8) 
with the help of Lemma 3 that 

C0f(x) dx = !f() + Z f(n) + Z f(2j-1)(0) B21 
(25) J-2 n=1 1= I (2])! 

-i(_ 1)kjL2k (t)(f(2k) (it) _f(2k) (-it))d t 
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(see also [9, Corollary 6]). The convergence of the infinite series is obtained as a 
consequence. Since along with f the functions f(?i-) are also of exponential 
type less than 27r, we see, using Lemma 4, that the right-hand side of (25) 
tends to that of (3) as k -* o0, thereby entailing the convergence of the series 
with respect to j. The absolute convergence of this series follows readily by 
estimating its terms with the help of Lemma 2 and (19). o 

Proof of Theorem 2. According to Theorem 1, 
00 

B 

(26) Rk[f] = Z f(2j 1) (0) ( 2j 
j=k (2j)!V 

Repeated application of Bernstein's inequality for entire functions of exponen- 
tial type [ 1, Theorem 1 1.1.2] yields 

(27) If(j) (?) < MTi. 

Thus, (26) and (19) lead to 
00 

24(2j) 21-1 < 2MC(2k) E T 2j 

Rk[f]l< I :MZ(27r)2jz - T / 27cX 
j=k j=k 

which clearly shows that (4) holds. 5 

Justification of Remarks 2-3. For the crucial estimate (27) to hold, the bound- 
edness of f on R is (by virtue of Bernstein's inequality) a sufficient, but not 
necessary, condition, as the example f(z) := e-z shows. Moreover, (27) is 
needed for odd i only. This justifies Remark 2. 

Under the hypothesis of Theorem 1, we infer from Lemma 2 that If(i)(O)I < 
(27r - e)i for e E (0, 27r - r) and all sufficiently large j. Using this inequality 
instead of (27) in the proof of Theorem 2, we easily confirm (5), and so Remark 
3 is justified. El 

Proof of Theorem 3. If we apply formula (20) of Lemma 6 to the function 
f(- + v), summation over vi yields 

N N 00Bn 
(28) Zf(z + v) = J f(x) dx + ((nf-1)(N)-f(n- )(0)) n! 

V=o ~~~~~~~~~n= 1 

We now claim that 

SN (Z) = Ef(n-1) (N) Bn (z) SNZ n! 
n=1 

tends to zero as N X-+0, the convergence being uniform with respect to z on 
compact subsets of C. Clearly, for fixed no > 2, 

no- I B 
(29) lim Z f(fl)(N)Bn(z) 0 

(29) ~~~~N-+oon= n! 0 n=l 

since by Lemma 3, f(i) (N) (j = 0, 1, . . . ) all tend to zero. Further, by Bern- 
stein's inequality for entire functions of exponential type [1, Theorem 1. 1.2], 

(30) If(i)(4)I < MTj for any 4 E R. 
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Hence, using Lemma 5, we may estimate 

E f(Bl)( )Bf(Z) -7r e27lzl ME T n 

(31) n=nO n=nO 

7r2 e2izi M T \nO 

3 T 1-T/(27Q) 2K27( 
This together with (29) shows that limN,0o SN(Z) = 0, uniformly on compact 
subsets as claimed above. Thus, (6) follows from (28) by passing to the limit 
N -* o0. Moreover, (31) implies that the second series on the right-hand side 
of (6) converges absolutely and uniformly on compact subsets of C. Finally, 
applying (6) to f (- + N), we obtain 

00 00 

Z f (z + n) = f(x) dx - SN(z). 
n=N N 

Therefore, the first series on the right-hand side of (6) converges also uniformly 
on compact subsets of C. O 

Justification of Remark 5. In the proof of Theorem 3, the boundedness of f on 
R was simply used to guarantee the validity of (30). However, this inequality 
is needed only for 4 > 0-a special case which does not necessarily require 
boundedness on the whole real line, as the example f (z) e-z shows. This 
justifies Remark 5. El 

4. NUMERICAL EXAMPLES 

For practical purposes it is reasonable to use the transformation in Remark 
1 even when the hypothesis of Theorem 2 is satisfied. For an arbitrary h E 
(0, 27r/T) the quadrature formula obtained in this way reads 

0 h 00k-l B2 
(32) ff(x) dx = k.f(O) + h Z f (hn) + Y h2'f(2j-) (2j)! + Rk(h)[f], 

Jo 2 ~~~~n=1 (2]) 

where 

(33) IRk(h)[] < 2M 
(2)T 27r) 

-I (hTr/2ir)2)rk2 
Although the summation over n is infinite, its terms are in general much simpler 
than those of the finite sum. Therefore, one should choose h so small that k 
can be kept relatively small. The summation over j may then be handled by 
hand, while the summation over n may be carried out on a computer. 

Example 1. Let f be the function defined in (7), which is not absolutely in- 
tegrable and is therefore not admissible for most of the familiar quadrature 
schemes. Since f is of exponential type ir, Theorem 2 could be applied di- 
rectly. However, we prefer (32), choosing h = 2-r (m E No), and obtain 

j f(x) dx = 2-`m + Z rn2- 

(34) k-1 
+ Z 2-2mjf(2j- 1)() B2 + Rk(2-n)[f]. 

j=1(2) 



224 Q. I. RAHMAN AND GERHARD SCHMEISSER 

It is known [5, p. 66, 1.441] that 
0 

sin(2-m71n) =7r 

n=l 

and so for m E N we have 
00 00 2~~~~~~~~~~~~~m-1 0 

cos(2-mrn) _ sin(2-mrn) -(1 -`2-r) sin(2mirn) 
n n+2m-1 n 2 n 

1= n2-1+1 n=l 

Further, for m = 0 we have [5, p. 29, 0.232] 
00 

cos(2-m7rn') cz r r7 
n+ 2m-1 =12n+ 1 2 2 2 

n=1 n=1 

Hence, introducing 

2 2- 72 if m = 0, 

(35) I i if m e N, 

n=1 

we may rewrite (34) as 

00 ~~~~~~k-IB2 

(36) ] f(x) dx = 2-(1-2-m)+2-m-Qm+Z 2 2mf(2 I)(0) (2j +Ak,m, 
2 ~~~ ~~~j=1 2). 

where 

(37) ~~~~~2C(2k) 
1 

(37) |^kml <~~~~ -1 4-(m+F)- 4k(mtl) 

In passing we mention that (36) is equivalent to performing the calculations 

f(x) dx = co(1/) dx = Xs 
dx 

f0 sinx 7r/2 sinx [n 7/12 sinx 
dx- dx = - - - dx 

J0 x Jo x 2 Jo x 

and approximating the last integral by means of the Euler-Maclaurin formula 
over [0, ir/2]. Table 1 contains numerical values of the bound in (37). It 
is seen that k = 3 already guarantees high accuracy. Denoting by Ik,m 
f0? f(x) dx - Ak, m the approximation to the integral, we have for k = 3 

I3,m I (71)2 - -2 2- QM 
2 2 3122 60 

with Qm defined in (35). Numerical results obtained with this formula are 
given in Table 2. 

Example 2. Let f(x) e-x sinx . Since for complex argument we may write 

(38) f(z) = 2e(-+i)z 
- 
e-(1+i)z 

(38) t (z)= ~~~~~2i 
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TABLE 1. Numerical values of the bounds (37) for Ak,m 

m\k 1 2 3 4 5 

0 1.10 * 10+00 1.80 * 10-01 4.24 * 10-02 1.05 * 10-02 2.61 10-03 
1 2.19* 10-01 9.02* 10-03 5.30* 10-04 3.27* 10-05 2.04* 10-06 
2 5.22* 10-02 5.37* 10-04 7.88* 10-06 1.22* 10-07 1.89* 10-09 

3 1.29. 10-02 3.32* 10-05 1.22* 10-07 4.69* 10-10 1.83* 10-12 

4 3.22. 10-03 2.07* 10-06 1.90* 10-09 1.83* 10-12 1.78* 10-15 

5 8.03* 10-04 1.29* 10-07 2.96* 10-11 7.14* 10-15 1.74* 10-18 

6 2.01 10-04 8.06* 10-09 4.63* 10-13 2.79* 10-17 1.70* 10-21 

7 5.02. 10-05 5.04* 10-10 7.23 10-15 1.09* 10-19 1.66* 10-24 

8 1.25* 10-05 3.15* 10-11 1.13* 10-16 4.25* 10-22 1.62* 10-27 

TABLE 2. I3, m of Example 1 

m | I3,m 
0 0.2063029201100739 
1 0.2001173254796469 
2 0.2000354115397625 
3 0.2000341780436255 
4 0.2000341589429144 
5 0.2000341586451322 
6 0.2000341586404818 
7 0.2000341586404090 
8 0.2000341586404079 

we see that If(z)l < e\/-lzl , and hence f is of exponential type . The 
function f is not bounded on R, but from (38) a straightforward calculation 
yields 

(39) f(2j-1)(0) 1 (-1)[(i-l)/2]2i-l for j E N, 

where we used the Gauss notation [x] for the integer part of x. Therefore, 
Remark 2 applies with M = 1/v"' and a = . Moreover, (32) makes sense 
for all h E (0, V1-r). In particular, if h = 2-m7r (m E No), the estimate (33) 
becomes 

(40) IRk(2"mr)[f]I < 4C(2k) 2-k(2m+1) 
1 - 2-(2m+1) 

Note that m = 0 is admissible, in which case the infinite series in (32) disap- 
pears completely; however, the remainder would converge to zero only like 2-k 
requiring large k. On the other hand, if m is large, k can be kept relatively 
small, but the infinite series converges slowly. Numerical results are given in 
Tables 3 and 4 (next page), where Ik m :f= f? f(x) dx - Rk(2-m7)[f] is again 
the approximation to the integral and N denotes the number of evaluations 
of f needed to calculate the infinite series with an error less than 5 * 10-16. 
Note that the precise value of the integral is 1/2, a primitive of f being 
-je-x(cosx + sinx). 

Let us compare (32) with formula (1.13) in [11], which reads as follows 
00 00 

(41) | f(x) dx = log q E qn f(q n) + R(q)[f] (q > I- 
n=-oo 

For Example 1, this formula is not applicable, since the infinite series diverges. 



226 Q. I. RAHMAN AND GERHARD SCHMEISSER 

TABLE 3. Approximations Ik ,m of Example 2 for k = 1, ... , 4 

m\k 1 2 3 4 N 

0 0.000000000000000 0.822467033424113 0.551886224996329 0.424718342248273 11 

1 0.313010082813037 0.518626841169065 0.501715540642329 0.499728542474391 22 

2 0.449682827105259 0.501087016694267 0.500030060411346 0.499999013564971 45 

3 0.487215493708023 0.500066541105274 0.500000481337592 0.499999996230617 90 

4 0.496791374451324 0.500004136300637 0.500000007565157 0.499999999985361 180 

5 0.499197067702016 0.500000258164345 0.500000000118377 0.499999999999943 359 

TABLE 4. Approximations Ik,m of Example 2 for k = 5, ..., 8 

m\k 5 6 7 8 N 

0 0.487473177010644 0.518754257483388 0.503125412380993 0.495312433879938 11 

1 0.499973678547681 0.500004226477830 0.500000410841819 0.499999933975455 22 

2 0.499999971127758 0.500000000959721 0.500000000028169 0.499999999999063 45 

3 0.499999999971097 0.500000000000230 0.500000000000002 0.500000000000000 90 

4 0.499999999999972 0.500000000000000 0.500000000000000 0.500000000000000 179 
5 0.500000000000000 0.500000000000000 0.500000000000000 0.500000000000000 359 

TABLE 5. Approximations Im by (41) 

m qm Im N 
T 2.7182818 0.497592866827195 39 

2 1.6487213 0.499760107047253 79 

3 1.3956124 0.500002842086111 118 

4 1.2840254 0.500000001472323 158 

5 1.2214028 0.500000000003945 197 

6 1.1813604 0.500000000001427 237 

7 1.1535650 0.499999999999996 277 

8 1.1331485 0.499999999999999 316 

For Example 2, (41) makes sense and according to Remark 1.5 in [11] we 
have for every ,B E (0, 1/2) 

(42) R(q)[fJ=6(exp(-f712/logq)) asq- 1+. 
Hence, replacing q by qm := exp(1/m) (m = 1, 2, ...), we see that the ap- 
proximations to the integral Im := f? f(x) dx - R(qm)[f] converge at least 
geometrically and may, in view of (40), be compared with the previous approx- 
imations Ik, m . Numerical results are given in Table 5, where again N denotes 
the number of evaluations of f . 

It is seen from Tables 3-5 that as m increases by 1 the number of correct 
digits obtained by the approximations Ik, m and Im increases in the average by 
about k/2 and 2, respectively. Hence, formulae (41) and (32) are comparable 
if in the latter k is chosen to be 4. For k > 4 formula (32) is superior (see 
Table 4). 

Two further aspects should also be taken into account. Looking at the last 
columns of Tables 3-5, we see that if we want to restrict the number of evalu- 
ations of f to about 100, then better approximations are obtained by formula 
(32) provided k is at least 2; i.e., the second sum in (32) does not reduce to 
zero. In particular, in case k = 8, already N = 90 guarantees 15 correct digits, 
while formula (41) needs more than 277 evaluations of f to achieve the same 
accuracy. However, in Tables 3-4, N roughly doubles as m increases by 1, 
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whereas in Table 5, N always increases by about 40. This means that for any 
fixed k, formula (32) is ultimately less efficient than (41) if the accuracy is 
forced up artificially. 

It should be mentioned that formula (41) is very simple to implement, where- 
as formula (32) becomes more elaborate with increasing k. Indeed, the cal- 
culation of f(2i- 1)(0) requires preliminary work by hand, and the Bernoulli 
numbers have to be either prepared for input or generated by a subroutine. 
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